
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

REFINING A TASK-EXECUTION TIME PREDICTION
MODEL FOR USE IN MSHN

by

Bianca A. Shaeffer

March 2000

Thesis Advisor:
Second Reader:

James Bret Michael
Mantak Shing

Approved for public release; distribution is unlimited.

STIC QUALITY INSPECTED 4

20000623 086

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
March 2000

REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE:
InMSHN

Refining A Task-Execution Time Prediction Model For Use

6. AUTHOR(S) Shaeffer, Bianca A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRlBUTION/AVAILABELrTY STATEMENT:
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE:

13. ABSTRACT (maximum 200 words)
Nowadays, it is common to see the use of a network of machines to distribute the workload and to share information between

machines. In these distributed systems, the scheduling of resources to applications may be accomplished by a Resource Management
System (RMS).

In order to come up with a good schedule for a set of applications to be distributed among a set of machines, the scheduler within an
RMS uses a model to predict the execution time of the applications. A model from a previous thesis was analyzed and refined to estimate
the time that the last task will be completed when scheduling several tasks among several machines. The goal of this thesis was to refine
the model in such a way that it correctly predicted the execution times of the schedules while doing so in an efficient manner.

The validation of the model demonstrated that it could accurately predict the relative execution time of a communication-intensive,
asynchronous application, and of certain compute-intensive, asynchronous applications. However, the level of detail required for this
model to predict these execution times is too high, and therefore, inefficient.

14. SUBJECT Resource Management System, Operating Systems, Distributed Systems, Scheduling,
MSHN, Heterogeneous Computing

15. NUMBER OF
PAGES

94
16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

REFINING A TASK-EXECUTION TIME PREDICTION MODEL FOR USE IN
MSHN

Bianca A. Shaeffer

Lieutenant, United States Navy

B.S., United States Naval Academy, 1995

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
March 2000

Jlanca A. Shaeffer

ßmw~)S>^yiti<di>jU
James Bret Michael, Thesis Advisor

Mamak Shing , Second Reader

rTtha Dan BogerrChairman, Dep; of Computer Science

m

IV

ABSTRACT

Nowadays, it is common to see the use of a network of machines

to distribute the workload and to share information between

machines. In these distributed systems, the scheduling of resources

to applications may be accomplished by a Resource Management System

(RMS).

In order to come up with a good schedule for a set of

applications to be distributed among a set of machines, the

scheduler within an RMS uses a model to predict the execution time

of the applications. A model from a previous thesis was analyzed and

refined to estimate the time that the last task will be completed

when scheduling several tasks among several machines. The goal of

this thesis was to refine the model in such a way that it correctly

predicted the execution times of the schedules while doing so in an

efficient manner.

The validation of the model demonstrated that it could

accurately predict the relative execution time of a communication-

intensive, asynchronous application, and of certain compute-

intensive, asynchronous applications. However, the level of detail

required for this model to predict these execution times is too

high, and therefore, inefficient.

V

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 3
1. MSHN 3
2. SCHEDULING .. 6

B. APPLICATION EMULATOR AND PREDICTION MODEL 8
1. EMULATOR FUNCTIONALITY 8
2. PREDICTION MODEL 9

C. ORGANIZATION 11

H. RELATED WORK.., 13

A. FIRST VERSION OF MODEL 13
1. GOAL OF MODEL 13
2. MODEL COMPOSITION 15
3. MEASURING LATENCY 17
4. MEASURING THROUGHPUT 18
5. MODEL VALIDATION 18

B. STATISTICAL PREDICTION THROUGH ANALYTIC BENCHMARKING.. 26
1. OBSERVATIONS BETWEEN DIFFERENT MACHINE TYPES ARE NOT

SHARED : 27
2. PARAMETERIZING MACHINE PERFORMANCE 29
3. ALGORITHM SUMMARY 31
4. VALIDATION OF ALGORITHM 32

C. SMARTNET 34
D. SUMMARY 37

m. APPROACH 39

A. DETERMINING THE ACCURACY OF THE TOOLS AND METHODS USED
IN THE PREDICTION MODEL 39

1. COMPUTATION TIME 39
2. COMMUNICATION TIME 42

B. ANALYZING THE MODEL AS A WHOLE 45
C. VALIDATION OF NEW MODEL 48
D. SUMMARY 49

IV. REFINING THE PREDICTION MODEL 51

A. MEASURING CPU TIME 51
B. DETERMINING THE CPU MULTIPLIER 53
C. MEASURING THROUGHPUT 55

1. ANALYZING THE CODE USED FOR MEASUREMENT 55

Vll

2. MEASURING THROUGHPUT WITH MESSAGES OF DIFFERENT SIZES 56
D. DETERMINING THE NETWORK MULTIPLIER 58

1. WITHIN A MACHINE 60
2. BETWEEN MACHINES 61
3. A COMBINATION OF TRANSMITTING BETWEEN PROCESSES
BETWEEN MACHINES AND WITHIN A MACHINE 62

E. USING A NETWORK ANALYZING TOOL 64
F. SUMMARY 65

V. RESULTS 67

A. EXPERIMENT ONE: 25 MESSAGES, 2000 BYTES, 1 MATRK
MULTIPLICATION 68

B. EXPERIMENT TWO: 25 MESSAGES, 20K BYTES, 1 MATRIX
MULTIPLICATION 69

C. EXPERIMENT THREE: 250 MESSAGES, 200 BYTES, 1 MATRIX
MULTIPLICATION 70

D. EXPERIMENT FOUR: 1250 MESSAGES, 200 BYTES, 1 MATRK
MULTIPLICATION 71

E. EXPERIMENT FIVE: 100 MESSAGES, 2000 BYTES, 1 MATRK
MULTIPLICATION 72

F. EXPERIMENT SK: 250 MESSAGES, 2000 BYTES, 1 MATRK
MULTIPLICATION 73

G EXPERIMENTSEVEN: 1250 MESSAGES, 2000 BYTES, 1 MATRK
MULTIPLICATION '. 74

H. EXPERIMENT EIGHT: 1250 MESSAGES, 4000 BYTES, 1 MATPJX
MULTIPLICATION 75

I. EXPERIMENT NINE: 2500 MESSAGES, 5000 BYTES, 6 MATRK
MULTIPLICATIONS 76

J. SUMMARY 77

VI. SUMMARY 79

A FUTURE WORK 80
B. CONCLUSIONS 81

LIST OF REFERENCES 83

INITIAL DISTRIBUTION LIST 85

vm

I. INTRODUCTION

This thesis explores the use of an analytical model to

predict an application's performance given a particular

distributed network system and an accurate assessment of the

available resources. The goal of this thesis is to refine an

already-existing model to more accurately predict the

execution times of applications. A previous thesis

investigated questions similar to those addressed here, but

limited its scope as follows:

• The use of three identical machines to form the

network;

• Each machine consisted of Pentium processors, each

running either Linux Kernel 2.0.32 or Microsoft

Windows NT Workstation 4.0 as the operating system

(the same operating system on all three machines at

the same time);

• The three machines were connected by an isolated

local area network;

• Each application consisted of three inter-

communicating processes, each of which executed

within a Java Virtual Machine (JVM);

• Each of the three processes consisted of five

threads;

• The only processes running on the machines at the

time of data-collection were those that applied to

the research;

• All processes ran either in a synchronous or an

asynchronous mode;

• All processes were compute-intensive.

The model, as it currently stands, correctly predicts the

relative execution times of compute-intensive applications,

but it does not accurately predict the performance of

communication-intensive applications. The model's

predictions do not account for the following:

• The time required for the CPU's to switch from one

thread of execution to another (context switching).

The more threads that require the use of each CPU,

the more time it takes to perform a context switch;

• The time that is required for a process to "recover"

from a collision on the network (when two processes

attempt to send a message over the network at the

same time);

• The overlap of a process's communication time and

its computation time.

The model uses an analytical solution that predicts how long

a given application will run when given certain resources to

use. In order to test the correctness of the model, an

application emulator was developed to emulate

computationally intensive and communication-intensive, as

well as synchronous and asynchronous, applications.

The next section of this chapter will give some

background that explains the motivation for conducting this

thesis research and how the research furthers the goals of a

project called MSHN (Management System for Heterogeneous

Networks). Section B will explain the scope of the model and

the emulator and why they were chosen. The last section

will outline the remainder of the thesis.

A. BACKGROUND

1. MSHN

A computer network is a collection of autonomous

computers that are able to communicate with each other.

This is much different from a distributed system, where

multiple autonomous computers are available to a user, but

the way in which the computers are utilized is transparent

to the user. This means that there is some sort of software

in between the user and the distributed system that chooses

what resources to assign to what jobs.

When assigning resources to an application on one

machine, that machine's operating system handles every

aspect of the scheduling to ensure that applications run as

efficiently as possible. By "resource," we mean anything,

including CPU time, that an application may need to

successfully complete its assigned task. Other examples of

resources are input/output devices and memory.

Nowadays, it is common to see the use of a network of

machines to distribute the workload and to share information

between machines. In these distributed systems, the task of

assigning resources to applications becomes a problem of

larger scope than that of the operating system on a single

machine, although the concept is quite similar.

A Resource Management System (RMS) is similar to a

distributed operating system in that it will distribute

available resources to the applications that need them, and

will sometimes even break up an application so that the

separate parts can be assigned separate resources and

increase the performance of the whole application.

However, a RMS differs from a distributed operating system

in that it does not micro-manage each computer's resources.

Each computer runs its own operating system, as all other

resources run their own protocols or operating system. The

RMS is responsible for keeping track of the status of all

resources and applications and for issuing commands to begin

executing applications.

The purpose of the MSHN project, from which this thesis

was borne, is to develop a RMS that supports the execution

of many different kinds of applications, each with its own

requirements, in a distributed and heterogeneous environment

[Ref. 1] . The functions to be performed by MSHN are the

following:

• monitoring general resource availability,

• transparent sensing of resource requirements of

applications,

• on-line measurement of resource and system state,

• mapping tasks and subtasks onto a heterogeneous

suite of machines in a way that exploits

heterogeneity,

• adaptation of jobs to variations in the availability

of resources. Factors influencing QoS for MSHN

include security, deadlines, priority, adaptability

(preferences for different versions), resource

availability, and external users,

• meeting QoS requirements including real-time

deadlines, fault tolerance, security, and

priorities.

This thesis is an important part of the MSHN project,

which is part of Defense Advanced Research Projects Agency's

(DARPA) Quorum program. The QUORUM program has as its

overall goal the determination of whether next-generation

Aegis and C4I applications, because of their diverse needs,

which include some real-time needs, can be supported by

Commercial Off-the-Shelf (COTS) and Government Off-the-Shelf

(GOTS) products. MSHN's role is to define a resource

management system that would wisely allocate the COTS/GOTS

resources to such diverse applications.

2. Scheduling

When scheduling resources for use by applications, each

resource can only be assigned to one application at a time.

For example, two processes running on a multitasking system

must share the CPU, with each running for a specific amount

of time before the other interrupts it (i.e., time-slicing).

There are different methods of scheduling, each of

which is more appropriate for certain situations than the

others. One such method is that of a gueue. When using a

gueue, each program waits its turn and is executed in a

serial fashion, usually on a first-come-first-served (FIFO)

basis. The queue is the most appropriate method for

scheduling devices such as printers, where each different

print job must be completed before the next can be started.

Another method used in scheduling is called a round-

robin. The scheduler will give each job a short time-slice

of processing time before moving on to the next job. When

using this approach, all jobs advance in small steps until

the last job is completed.

. In a distributed system, applications are scheduled in

a way that will maximize the use of the resources available.

In order to be even more efficient, an application may be

divided up such that each part can be executed on different

machines.

When a RMS schedules its applications, there are

multiple considerations it must make. MSHN uses a

Scheduling Advisor to .determine which set of resources to

assign to a newly arrived process. The Scheduling Advisor

needs to know which resources and how much of those

resources a process will need in order to meet its Quality

of Service (QoS) requirements. To aid the Scheduling

Advisor, MSHN uses a Resource Requirements Database that

stores very fine grain information about the resource usage

of each application that was previously executed by the RMS

[Ref. 1].

In order to test the RMS and all of its components, it

is necessary to run many different types of applications on

the system. It would have been very expensive and time-

consuming to build or acquire the many different

applications needed. Therefore it was decided that a

general-purpose application emulator, whose parameters could

be changed to cause it to emulate the different

applications, was the best recourse.

B. APPLICATION EMULATOR AND PREDICTION MODEL

1. Emulator Functionality

A real application running on a distributed system will

require the use of certain resources over others. In

general, an application can either be compute- or

communication-intensive. When an application is compute-

intensive it will need a lot of CPU processing time in order

to accomplish its task. On the other hand, if an

application is more communication-intensive, it will need to

be allocated communication devices in order to accomplish

its task.

The application emulator will emulate compute- and/or

communication-intensive applications and leave the same

"resource usage footprint"(Ref.1) as the real application

would leave. The emulator allows for the simulation of

running applications without having to acquire, install, and

maintain the real applications.

The second purpose for the application emulator is that

it will act as a monitor when there are no other MSHN-

scheduled applications running on the system. While no

applications are being executed on the system, it is still

necessary to identify the status of the resources available.

In order to do this, an instance of the application emulator

will be started. This will be a default occurrence at

start-up of the system.

2. Prediction Model

In order to come up with a good schedule for a set of

applications to be distributed among a set of machines, it

would be helpful to be able to predict how long an

application will run on a given machine. The task of

predicting the run-time of a certain application is not a

trivial problem and is known as the "execution time

estimation problem" (Ref. 3) .

There are three methods that can be followed when

solving the execution time estimation problem: code

analysis, analytic benchmarking/code profiling, and

statistical prediction. Code analysis requires the thorough

study of the source code of the application. For all but

trivial problems, this is an inefficient method, and is not

conducive to a heterogeneous computing environment.

Analytic benchmarking/code profiling is more useful in

a heterogeneous computing type of environment because it

identifies different primitive code types and then, for each

code type, it obtains performance benchmarks for each

machine in the heterogeneous system. Code profiling will

determine the code types of which a certain application is

made up. The combination of the code profiling and the

benchmarking together produce an estimate of the

application's execution time.

The last of the methods, statistical prediction, makes

use of the applications' execution times in previous runs.

As the number of times the application is executed

increases, odds are that the accuracy of the prediction will

also increase. The problem with this method is that there

is no way of predicting the execution time of a given

application if it has never been executed on a certain

machine.

The model used for this thesis, which estimates the

time that the last task will be completed when scheduling

several tasks among several machines, uses an analytical,

closed-form solution to solve the problem. This is a form

of the benchmarking/code profiling technique mentioned

earlier. The model will be explained in more detail in

Chapters II and III.

10

C. ORGANIZATION

Previous work done in this area of research will be

discussed in Chapter II of this thesis. Chapter II covers

in detail the thesis to which this thesis has followed up.

It also presents some work performed in statistical

prediction for distributed computing environments and how

SmartNet,' MSHN's predecessor, handled its scheduling.

Chapter III will discuss the details of the prediction

model, as well as how the application emulator is used to

validate the model. Chapter IV will present the results of

our experiments. Finally, Chapter V will give a summary of

the thesis.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

II. RELATED WORK

This chapter consists of a presentation of the results

of the thesis to which this thesis follows up. As

described in Chapter I, the motivation for this research is

to determine the granularity necessary for a model to

predict execution times of applications to be scheduled in

a heterogeneous distributed computing environment. The

prediction task raises some fundamental issues. However,

very little sophisticated research has been conducted to

address these issues. We will discuss some recent research

conducted at Ohio State University that addresses this very

topic. The last section of this chapter summarizes the

functionalities of another resource management system,

SmartNet, which is the predecessor of MSHN.

A. FIRST VERSION OF MODEL

1. Goal of Model

The goal of the model as it was originally designed

was to "determine the appropriate granularity to use in a

model for resource allocation."(Ref. 1) This means finding

a good balance between finding a model that is so fine-

grained that it takes a long time to produce its result,

and finding a model that is too simple as to produce a

13

result that is either not accurate enough or completely-

incorrect. There are trade-offs between using a fine-

grained model and using a coarser grained model. The

overhead incurred and the desired level of accuracy are

just two of the many aspects of choosing the right level of

granularity in a model.

As was listed in Chapter I, this execution time

prediction model was able to predict the relative execution

time of an application that was compute-intensive, but not

that of a communication-intensive application. There are

times when determining the relative performance of a

schedule is "good enough," but there are times when it is

necessary to predict the absolute performance. The

following example of the difference between relative and

absolute performance was given in Reference 1.

Say we have two schedules of an application, each with

a predicted and an actual run time, as shown in Figure 1.

If we have accurately predicted the relative performance of

two schedules, when the predicted times, Al and Bl, are

compared to the actual run times, A and B, we can correctly

determine which schedule is better than the other. In this

example, if we choose schedule A, we can deem the

prediction model "good enough" for our purposes. However,

14

if we choose schedule A when assigning a particular task to

a machine, and the same request is made again, our model

would again assign the same schedule for that second task.

This is because the time required to execute two Al

schedules is less than the time required for one Bl

schedule to execute. But in reality, twice the time needed

for schedule A is not less than the time required for

schedule B.

A A1 B B1

Schedules

Figure 1 [From Ref. 1]. Example of Actual v.
Predicted Times

2. Model Composition

This model uses as its heuristic the time at which the

last process in a schedule completes its execution. The

class of applications that can be modeled using this simple

model is that of applications whose resource usage patterns

15

can be divided up between its computation and its

communication load. This allows the model to remain

flexible in the way that it defines a particular

application, while still being able to model a wide variety

of applications. (Ref. 1)

The inputs to the model, known a priori, are broken

down as follows:

a) Computation Time

• The amount of time the application is expected to

use the CPU.

• This does not include any time the CPU is used

for process communications.

• If more than one process is using a CPU at the

same time, the computation time must be dilated.

b) Communication Time

• This is divided up into the time spent sending

the message, which is dependent on the throughput

of the communication link (either an Ethernet

connection or shared memory within a single

machine) and the time spent processing the

message by the sender and receiver (considered

the latency time). The algorithms for measuring

16

the throughput and latency between/within

machines are described later.

• If more than one process is sending data over any

communication link, then there is a contention

for that resource.

• We know the mean number of messages, along with

the mean size of those messages and their

distribution types, that each process is to send

to each of the other processes.

3. Measuring Latency

The time required for a message to propagate up and

down the TCP/IP stack is an example of the network latency

as used in this model. To measure this value, we use the

following method: with no other network traffic currently

on the links, we send a large number of small messages (in

this instance, 10,000 1-byte messages), and then echo the

messages back to the sender. This time represents two

latency times, since we measure the time it took for the

receiver to receive and then send the messages back to the

sender. If this latency time is divided by two, then we

have our one-way latency. Now this value, divided by the

total number of messages, gives us the latency per message.

17

This latency, when actually measured and compared to

the propagation time, was too insignificant to include in

the model. It was therefore not actually used.

4. Measuring Throughput

The model uses a procedure that sends a large message

between the sender and the receiver (both could be on the

same or on different machines) . This is different than the

method used for measuring the latency, which sent a large

number of very small messages, assuming that the

propagation time for very small messages is zero. The time

required for the message to be sent, received, and echoed

back to the sender is measured. That time divided by two

gives you the time required to send the message in only one

direction. We then subtract the one-way latency time,

since it is only the propagation time for which we are

looking. If that time is divided by the size of the message

sent, the resulting value is the throughput for that link.

5. Model Validation

In order to validate the model, the application

emulator mentioned in Chapter I was used. This emulator

takes in the "model parameters as input and emulates the

behavior of an application." (Ref. 1) These applications

consist of processes that communicate with each other and

18

also spend some time performing computations. By using the

input parameters that the prediction model uses as inputs

to the emulator and measuring how long the applications

actually take to run, it is possible to then compare the

predicted versus the actual run times.

Table 1 shows the throughput measured, and therefore

the values used for the predictions in the model.

Throughput for Machines running NT
(Mbytes/sec) Machine 1,

Gratian
Machine 2,

Tiberius
Machine 3, Pius

Gratian 4.38 0.99 0.99
Tiberius 0.99 4.38 0.99

Pius 0.99 0.99
' f >

4.38

Table 1 [From Ref. 1]. Measured Throughput

Table 2 represents the input parameters to the

emulator in order to measure the CPU time of one process,

with sole use of the CPU, without sending any messages.

Table 3 shows the average time for an application's

computation time. The times are for all processes running

on either a Windows NT or Linux operating system, and

either in a Graphical User Interface (GUI) version or in a

non-GUI version.

19

Number of passes through matrix multiply: 1
Number of messages sent (on average): 0
Distribution of time between messages: Constant
Size of message (on average): 4k bytes
Distribution of message size: Constant
Synchronous 1

Table 2 [From Ref. 1] . Parameters Used For CPU Measurement

Average CPU only time (seconds)
Linux NT

GUI version 14.08 2.65
non-GUI version 14.01 1.51

Table 3 [From Ref. 1]. Average CPU Only Time

Four experiments were conducted to compare the model

to the actual emulator execution times. In each of the

experiments, the emulation of the application consisted of

three homogeneous processes, each with a computational

thread and an input and output thread for each of the two

other processes. All of the output threads sent the same

number of messages, all of the same distribution in size,

to the other processes. The three processes, distributed

among the three machines, make up 27 possible schedules.

The mapping of processes to the machines is as shown in

Table 4.

20

Schedule Machine
Number Assignment

1 111
2 211
3 311
4 121
5 221
6 321
7 131
8 231
9 331
10 112
11 212
12 312
13 122
14 222
15 322
16 132
17 232
18 332
19 113
20 213
21 313
22 123
23 223
24 323
25 133
26 233
27 333

Table 4 [From Ref. 1] . Mapping of Schedule Number To
Machine Assignments

The experiment details were as follows:

21

a) 25 Messages, Synchronous, GUI Version

Table 5 shows the parameters used as inputs for

the model and emulator. As shown in Figure 2, the model was

able to predict the relative run times of all possible

schedules of the three processes on the three machines.

However, the model is not able to predict absolute run

times.

Number of passes through matrix multiply: 1
Number of messages sent (on average): 25
Distribution of time between messages: constant
Size of message (on average): 4k bytes
Distribution of message size: constant
Synchronous 1

Table 5 [From Ref. 1] . Parameters Used for Experiment One

50.0

45.0

40.0

.-. 35.0 o
j» 30.0

«j 25.0

i

n 0 i ■ i

. :. " j

• „ ' ■ ■ i
- -n-fl M n—n n—fj—=-

< : 1

■ n n _n_ : j_: : a! : ü
; , ' < ' i

'".:'■ !

iittamtii 11.[aattt

20.0 HIHHH

15.0

10.0

5.0 -It

0.0

B Actual
■ Predicted

t-toior>-o>t— coior^oji— coior-.
■^-■>-T--^T-CMeNC>J<M

Schedules

Figure 2 [From Ref. 1] . Actual vs. Predicted Run-Times for
NT, Experiment One, GUI, 25 Messages, Synchronous

22

Jb^ 25 Messages, Synchronous, Non-GUI

The parameters used as inputs to the emulator for

this experiment are the same as those used for experiment

one. The only change between the two experiments was the

use of the GUI- versus the non-GUI version of the emulator.

The model was still not able to predict absolute run times,

but relative performance was still predicted correctly.

Figure 3 shows the results of experiment two. Note that

the scale of the y-axis is different for each experiment's

output graph. This is due to the different range of run

times for the schedules in each experiment.

25.0

20.0 -

o
j» 15.0
(A

£
7. 10.0 4

5.0

0.0 II u 1

I Actual
I Predicted

f-coior^CDT-coioi^OT-comi^
T-T-1-I-T-CMC-ICMC^

Schedules

Figure 3 [From Ref. 1]. Actual vs. Predicted Run-Times for
NT, Experiment Two, non-GUI, 25 Messages, Synchronous

23

c) 25 Messages, Asynchronous, Non-GUI

This third experiment uses the same input

parameters as experiment two, except that the messages sent

from each process to the other processes are sent

asynchronously. Figure 4 shows the improvement in the

performance of the application when all messages are not

sent synchronously, and the performance of the model is

also much improved. The gap between the predicted and the

actual run times was lessened noticeably.

o
0)

a>
E

1 Actual
Predicted

o> -r- co io re-

schedules

O) t- <o w
N N N

Figure 4 [From Ref. 1] . Actual vs. Predicted Run-Times for
NT, Experiment Three, non-GUI, 25 Messages, Asynchronous

24

d) 1250 Messages, Asynchronous, Non-GUI

After running three experiments that emulated

more compute-intensive applications, this last experiment

was aimed at emulating a more communication-intensive

application. The results, shown in Figure 5, tell us that

the prediction model breaks down when attempting to predict

run-times for communication-intensive applications. Not

only does it not correctly predict absolute performance,

but it also does not correctly predict relative

performance.

35.0

30.0

25.0

£-20.0
(A a>

| 15.0
c
E

10.0 -

5.0-

0.0

i im . 11 $

I Actual
I Predicted

•»- CO W h» OJ
«r-i-T-T-CNCMWCN

Schedules

Figure 5 [From Ref. 1] . Actual vs. Predicted Run-Times for
NT, Experiment Four, 1250 Messages, Asynchronous

25

B. STATISTICAL PREDICTION THROUGH ANALYTIC BENCHMARKING

This method of predicting task execution times for use

in a distributed heterogeneous environment was developed at

Ohio State university. The advantages of adopting this

method are that it does not need to know a priori how long

an application takes to run on each available machine in

order for a good schedule to be determined, and that the

algorithms can take into account the differences between

each machine's capabilities. This method defines a task's

execution time as a random variable, and computes that

random variable as a function of the input data and machine

capabilities for that specific task on a specific machine

[Ref. 3].

Any process has an input data set that determines its

execution time on a certain machine. This input data set

can be described as a parameter vector such as:

X=[xlx2-xp].

The function t = m(X) can be used to model the task execution

time according to this parameter vector. It is not always

the case, however, that all q parameters can be modeled,

thus only allowing p parameters, where p<q, to be modeled.

Now the function used to model the execution time of a task

26

according to its input parameter vector becomes the random

variable:

where m(X) represents all the modeled factors affecting the

execution time and s represents all the unmodeled factors.

The study done at Ohio State University was divided

into two distinct parts: the first computes the execution

times of a task given an input parameter set on a

particular machine, while the second also uses a

parameterization of different machines. By adding the

information of the machine type, the task execution time

can be modeled as a function of not only previous

observations of the task executing on machines of the same

type, but on all observations of previous executions,

regardless of the machine type.

1. Observations Between Different Machine Types are
not Shared

In the first part of this study, when given an input

parameter vector, X, and a given task, the authors present

a method for estimating m(X) and e, estimators for m(X)

and s in the equation presented earlier. For the given

27

task, there will exist a set of n previous observations of

the execution time {(*,.,X.)}"_ , where tt is an observed

execution time for the parameter vector Xi [Ref. 3] . Each

machine type in the heterogeneous network requires a

separate set of observations to be maintained and used in

the statistical prediction of the current task's execution

time. Thus, if a task is executed on a given machine type

n times/ and then the same task is scheduled to run on a

different type of machine, those n observations cannot be

used in the prediction of the new execution time.

Nonparametric regression techniques are used to

compute m(X), since the estimate depends only on the set of

previous observations. This technique uses the equation

m(X) = -t,Wi(X)ti.
n 1=1

(^ is a weighting function that assigns higher weights to

observations close to the parameter X than to those farther

from X, as shown in Figure 6. This equation states that for

a certain parameter vector X , m(X) is a weighted average

of the execution times, tif of the past n observations.

28

2 . Parameterizing Machine Performance

The second section of this study incorporates all of

the sharing of observations between different machine

types. The authors point out two reasons why one would

want to have this capability:

©
E
H
C
o

o
o
X
UJ

Lower Weight

A
I 1
♦ ♦ ♦ ♦ ♦ ♦

♦

♦
* /
Higher Weight

Problem Size

Figure 6. Assigning Weights to Observations

a) Requiring a different set of observations for each

machine type makes it difficult to add or remove any

new machines or applications to or from the network.

The system will have to gather a few observations for

each new machine-application pair for the algorithm to

accurately predict the new execution times.

b) Because of the increased likelihood of the algorithm

to coming up with incorrect prediction times when

29

there are only a few observations for a given machine,

there is a chance that the new machine will not get

tasks scheduled for execution on that machine. If

that new machine is starved of applications to run,

then it will not gather new observations to add to its

short list of observations, therefore not improving

its chances of being chosen by the scheduler [Ref. 3].

In order to share all observations from all machines

when predicting the execution time for an application on

any given machine, one has to have a method for numerically

characterizing all machines and thus include that

characterization in the input parameter vector. This

method would numerically indicate the performance

difference/similarity between any given set of machines.

The method of analytic benchmarking is used for this

purpose.

Using this method, each machine in the network is

characterized by a benchmark vector. Ideally, one would

like to have a benchmark for every possible code type that

characterizes the performance of each machine. In reality,

it is not efficient, if even possible, to come up with a

complete set of benchmarks. Therefore, a "reasonable set

30

of r benchmarks [Ref. 3]" is obtained. This set of

benchmarks will comprise a machine space, where each

machine is represented within the machine space by a

benchmark vector.

For example, machine * is represented by the vector

B; =\bjbf"-bi], where benchmarks 2 through r affect the

performance of machine i .

To predict the execution time of a task with an input

parameter vector of X = [x1x2-- xp] on machine i with a

benchmark parameter vector Bt =\b}b?---b-], the following

parameter vector would be used: Y= \bjbf---b-x1x2---xp\ .

3. Algorithm Summary

The following is the authors' summary of the Execution

Time Estimation Algorithm presented in this paper (Ref. 3):

begin
For each candidate machine j with

benchmark vector By =
J J J

begin

Compute Mjj) anc* ^ where

Yj-lbfi-b'jxW-x'].
end
Give estimates computed above to
matching and scheduling algorithm.

31

The algorithm will return a
machine j chosen to execute the
task.
Execute the task on machine j and
measure the execution time tn+i .

Add observation (t„+1,Yn+1) to the set
of observations.
n = n + l .

end

When a new application is first introduced to the

network, it must be run at least one time in order to get

at least one observation. To function correctly, the

algorithm requires each application to have at least one

recorded observation. For the algorithm to function more

precisely, the new application should be executed on at

least a few of the machines. The authors state that "these

values are easily obtained during the development, testing,

and debugging of the application." (Ref. 3)

4. Validation of Algorithm

In order to validate the use of their algorithm, the

authors ran a number of experiments using a network of 16

heterogeneous machines. In three different experiments,

they simulated adding a new machine to the existing network

and running an application on that machine. These

simulations were done to compare the performance difference

32

of the execution time estimation algorithm when

observations can and cannot be shared between machines.

The number of observations varied between 1 and 50. The

application that was chosen to run was a Cholesky

decomposition algorithm whose execution time depends on one

parameter: the size of a matrix.

The first simulation shows the performance of the

estimation algorithm when observations cannot be shared

between machines. Therefore, the input parameter vector to

the estimation algorithm was made up of only the size of

the matrix used in the Cholesky algorithm task. The second

simulation added the ability of the estimation algorithm to

use 350 observations previously gathered from executing

that application uniformly on the other 15 machines. In

this simulation, a 10-dimensional machine space

(constructed from 10 benchmarks), reduced to 3 dimensions,

was used. The third simulation was similar to the second,

with the difference being that the full 10-dimensional

machine space was used.

The results of the three simulations show that being

able to share observations between machines produces a much

more accurate estimated execution time than when

observations are not shared. However, the difference

33

between the second and third experiments shows that there

is not much of a difference between the performance of the

algorithm when using a full or a reduced machine space.

When the number of observations was low, the fist

simulation produced prediction errors of, on average,

around 500 percent. With the same number of observations,

the second and third simulations produced errors of around

50 percent. When the number of observations grew larger,

all three simulations produced errors of around 15 percent.

The advantage of using a reduced machine space over a full

machine space comes into play when measuring the

computational cost of the estimation algorithm. Using a

reduced machine space proves to be much more efficient.

(Ref. 3)

C. SMARTNET

MSHN's predecessor, SmartNet, is a scheduling

framework that has been successfully used by the Department

of Defense and the National Institutes of Health. It was

developed by the Heterogeneous Computing team at the US

Navy's facility at the Naval Command, Control, and Ocean

Surveillance Center (NCCOSC) for Research, Development,

Testing and Evaluation (RDT&E) in San Diego [Ref. 2] .

34

SmartNet's purpose was to optimize schedules for compute-

intensive jobs among a network of heterogeneous computers

[Ref. 1] . By using SmartNet as the scheduler or basic RMS

within a distributed system, that computing environment's

performance in executing its applications could be

improved.

The major research contributions made by SmartNet

included using a job's compute characteristics and data

collected from the previous executions of the job to

predict that job's expected run-time on a particular

machine. With the ability to predict the execution times

of applications, SmartNet was geared towards minimizing the

time when the last job scheduled among a set of jobs

finished running. SmartNet supported the idea that being

able to estimate average application run-times was good

enough for scheduling purposes, and that predicting exact

run-times was not absolutely necessary [Ref. 1].

SmartNet consists of four separate processes:

1. Controller — interfaces with and manages all

resources.

2. Scheduler — includes Exhaustive, Greedy,

Evolutionary, and Simulated Annealing scheduling

35

algorithms. New algorithms are easily integrated

with the existing ones.

3. Database — maintains information on machines, jobs,

expected time for completion (ETC) data for all

machine-job pair listings. These ETC's are used by

the Scheduler when assigning machines to current

jobs.

4. Learning and Accounting — tracks and reports

processes that exceed their ETC by more than a

predetermined amount of time and may cause the

schedule of other processes to be in danger of not

being met. The Learning and Accounting process also

updates the Database with the actual run-time of the

process when run on the current machine [Ref. 2].

In order to come up with a good schedule, the SmartNet

Scheduler uses data obtained a priori about the

applications to be scheduled and the resources available.

Thus, every new application-machine pair must be included

in the SmartNet Database.

36

D. SUMMARY

As this chapter shows, the task of predicting

application execution times is currently a research area

that is very open. Most RMS's today must have the user of

an application provide input data when the application is

first executed in its computing environment. The

predictions become more accurate only after the application

has been executed several times on each machine available,

making it difficult when the computing environment is very

large. The research conducted recently at Ohio State

University is step in the right direction for heterogeneous

computing environments. This thesis, while focusing on a

small section of the overall problem, is also a step in the

right direction.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

Ill. APPROACH

In order to refine the existing task execution-time

prediction model, it was necessary to break the model down

into its component parts and analyze, correct, and validate

each component. This chapter describes how the model is

partitioned, and what steps were needed to modify the model

from the original, incorrect model into the existing one.

A. DETERMINING THE ACCURACY OF THE TOOLS AND METHODS USED
IN THE PREDICTION MODEL

As stated in Chapter II, the prediction model divides

an application's execution time into its computation time

and its communication time. From the experiments run

during the previous work mentioned in Chapter II, we

suspected that the model could accurately predict an

application's computation time, but not its communication

time. Since the research for this thesis meant to refine

the previous model., it was necessary to validate that both

the computation and the communication times were being

modeled correctly.

1. Computation Time

The time that an application spends performing its

CPU-intensive tasks is considered its computation time.

39

This parameter is known a priori, based on previous runs of

the application, and represents the time the application is

expected to use the CPU. This computation time, together

with the time the application spends communicating, make up

the application's total run time.

As was mentioned in Chapter II, the previous model ran

an application that did not involve any communication, and

used that execution time as the computation time for that

application. If the same application is executed again, but

this time needs to run through the same calculations two

or more times, then the execution time observed for the

first run would only need to be multiplied by two or more,

depending on how many times the application expected to

perform the calculations.

For example, the application emulator that was used to

validate the prediction model used a computation thread

that performed a matrix multiplication problem. If the

application being modeled was to run through the matrix

multiplication problem only once, then it would use the

computation time that was already recorded from running the

application previously. But if the application being

modeled was expected to run through the matrix

multiplication three times, then the computation time

40

previously known would simply be multiplied by three. The

question raised by this thesis was, "Is this the right way

to obtain the computation time of an application?"

Intuitively, this method seems to be correct. The

question then became whether the execution times obtained

from the application emulator accurately represented the

amount of time the application spent performing its matrix

multiplication calculations. To answer this question, we

needed to modify the application emulator slightly.

Previously, the emulator measured how long the application

took to execute. In order to run the emulator, the user

started a "master controller" process that triggered a

timer, started the application process, then when the

application process reported to have completed, the master

process would stop the timer. The problem with this method

is that it did not take into account the amount of time

spent assigning the application to a machine, nor the time

it would take the application process to send its

completion information back to the master process.

The application emulator was modified so that it would

itself time how long it took in performing its CPU-

intensive task. This value is then passed back to the

master controller process to be output for analysis

41

purposes. The master process now has data on both how long

it took for the application to execute, and the duration of

the CPU-intensive portion of the application.

2. Communication Time

The original prediction model divided an application's

communication time into three parts:

a) The sender's time spent preparing its messages

before sending them;

b) The time transmitting the messages;

c) The time the receiver spends processing the messages

received.

Parts a) and c) are grouped together to make up the

latency time. By measuring the throughput of a network link

and knowing the size and number of messages to be sent, we

can determine part b) . If there is more than one process

sharing a link between or within a machine, then the

previous model simply divided the overall throughput of

that link by the number of processes sharing it.

a.) Throughput

As with the model's method of predicting an

application's computation time, we also raised the question

42

of whether its method of predicting the application's

communication time was correct. The first step was to

determine whether the model was using the correct values

for the throughput between the three machines, and within

each machine, in the test bed. This involved the following

steps:

1) Review the code that was used to measure the

throughputs for accuracy and possible mistakes;

2) Since the program measured throughput by

sending a message of known size and timing how

long it took, then see what the throughputs

would be when sending a small message versus

that of a large message;

3) Test the difference in throughput when only one

process is transmitting versus when more than

one process are sharing a link;

4) Validate the throughput-measuring program by

using a commercially-available network analyzer

to measure the throughputs.

43

b) Latency

The next step in determining the accuracy of the

model when computing an application's communication time

was to determine if the method used to compute its latency

time was correct. This involved simply a review of the

code used to measure the latency time. The method used for

the measurement is as described in Chapter II. The values

measured were so insignificant to the overall execution

time that the latency time was left out of the model.

What the model failed to include was the latency

time incurred when assigning a process to be executed on a

remote machine (as mentioned in the previous section

regarding "Computation Time"). It is possible that this

was left out of this model because of the proximity of the

three machines in the test bed, thus making this latency

time very small. However, in a real distributed computing

environment, the distance between processors can be very

long. The latency involved in assigning a process to a

distant machine would be a significant factor in the

scheduling process.

44

B. ANALYZING THE MODEL AS A WHOLE

When devising a model to use, one chooses a measure to

estimate. In this case, the measure was the time at which

the last task of an application, when scheduled among one

or more machines in a network, completes. In this thesis,

as described in Chapter II, the test-bed of three

homogeneous machines and one emulated application composed

of three homogeneous processes allowed for 27 schedules to

be modeled (see Table 4) . Table 6 is an example of the

input to the prediction model and the subsequent predicted

execution time of Schedule One, in which all three

processes are assigned to Processor One.

Each process is broken down into two parts, each

representing the communications between that process and

the other two processes in the simulated application. As

mentioned earlier, the specific inputs to the model that

needed to be reviewed for accuracy and validated were the

following:

1) CPU time

2) CPU time multiplier

3) Throughput

4) Network multiplier

5) Network Time.

45

The reasoning behind the use of the "network multiplier"

input to the model is shown in Figure 7. The figure shows

the three processes within the application, all scheduled

to machine one (as is done in Schedule One) . Since all

three processes share the internal memory, or link, within

the machine, the network multiplier is "six."

Throughput Measured
Network Time
Network Multiplier
CHUnirrie (ms)j, *.
CPU Time Multiplier

Throughput Measured
Network Time
Network Multiplier

Number of messages
Message Size
Total Data bytes

TotaJ (seconds) _

Sched 1
111

Process 1-2 Process 2-1 Process 3-1

4.38
0.14

6
12.15

Process 1-3 Process 2-3

4.38
0.14

6

25
2000

100000

3 9189726

4.38
0.14

6

25
2000

100000

3 9189726

Process 3-2

4.38
0.14

6

25
2000

100000

3.9189726

Table 6. Original Model' s Prediction for Schedule 1

46

MACHINE 1

(PI
S^ 1

/ 2 '

\ 5 3 />

' Yl\

6 ^ P3) (£ 4

Figure 7. Sharing of a communication link within a
machine.

If the schedule being modeled were Schedule Two, the

first process would be scheduled on Machine Two, and the

other two processes would be scheduled on Machine One. As

shown in Figure 8, the Ethernet link between machines one

and two would be shared by four communicating threads, and

the internal link of machine one would be shared by two

communicating threads.

MACHINE 1 MACHINE 2

Figure 8. Sharing Communication Links Between Two Machines.

47

So far, we have shown examples of an instance when all

processes are scheduled to one machine, and an instance

when one process is scheduled to one machine and the other

two processes are scheduled to another machine. The third

example is that of each process being scheduled on a

separate machine. Figure 9 shows how Schedule Six shares

its communication links. In this instance, the model used

a network multiplier of six to represent the three machines

sharing the Ethernet link.

MACHINE 1 MACHINE 2 MACHINE 3

Figure 9. Sharing Communication Links Between Three
Machines

C. VALIDATION OF NEW MODEL

After making the necessary changes to the prediction

model, it needed to be validated using the application

emulator, just as the original prediction model was

validated with the emulator. As outlined in Chapter II,

the emulator takes the model parameters as input and runs

48

an application using those parameters. For example, if the

input parameters to the model were such that the CPU

multiplier were six, the number of messages to be passed

between processes was 2000, and the size of the messages

was 4000 bytes, then the application emulator would run

through the matrix multiplication problem six times, send

2000 messages between each process, and each message would

be 4000 bytes long. The actual run time of the application

is then be compared to the output of the model.

D. SUMMARY

The coarse-grained, simple approach of the original

prediction model proved that its methods were not "good

enough" to accurately predict the execution •times of a

particular type of application. This chapter outlined the

steps taken to determine which methods within the model

needed modification. The model is broken down into an

application's computation time and its communication time.

The combination of the two times makes up an application's

execution time.

The following chapter contains details about the

experiments that were conducted in order to answer all of

the questions posed in Chapter III. The results of the

49

experiments and their meaning will show our reasoning

behind the changes that were made to the original

prediction model.

50

IV. REFINING THE PREDICTION MODEL

Refining the execution-time prediction model required

partitioning the model into its components and validating

or modifying each one. This chapter explains in detail how

the model was partitioned and what experiments were

conducted to ensure each component was correct. Our

approach to this problem included dividing the model into

its computation time inputs and its communication time

inputs.

A. MEASURING CPU TIME

In order to measure the exact amount of time an

application spends performing its CPU-intensive tasks, it

is necessary to run that application so that it does not

perform any communication. In the case of the application

emulator used in this thesis, we placed a timer around the

code that performed the matrix multiplication problem that

made up the CPU-intensive part of the application. In this

way, it was possible to single out that part of the

application, and to know exactly how long the CPU spent

executing it.

After inserting the extra lines of code into the

application emulator, we ran the emulator with several

51

different input parameters. The goal was to run the

application emulator on each of the three machines

separately, so that each machine executed the matrix

multiplication problem without ever needing to communicate

with other processes. After running the emulator on all

three machines, we were able to compare the computation

time versus the total execution time of the application on

each of the three machines. The results are shown in Table

CPU time vs Total Execution Time
(msec.) PIUS TIBERIUS GRATIAN
Total Time 1085 1087 1085
wv/lllUUUaUUH HIT 16 209

Table 7. CPU Time vs. Total Execution Time

As Table 7 shows, the time spent in the actual matrix

multiplication was approximately one-fifth of the total

execution time of the application. Since the application

did nothing other than compute the matrix multiplication,

then the rest of the execution time is the time spent

transmitting the schedule from the master-controller

process to each of the three machines.

52

B. DETERMINING THE CPU MULTIPLIER

Since „e now know how long the application emulator

spends computing the matrix multiplication problem, we

needed to execute the appiication such that it ran through

the problem more that one time. The input parameters tc the

application emulator include an input to how many times the

application is to run through its CPU-intensive portion, and

therefore, it needed to be modeled.

Once again, the method used „as to run the application

emulator on one machine at a time, and having it send zero

-ssages. The emulator was executed several times, each

trme incrementing the input that determined how many times

the application would perform the matrix multipücation

problem. Table 8 shows the outcome of the experiments

ITimes thrauqh I
[matnx.-mufttplY§-v ^f-l*^

£**.?■»>«»

Total Time
Computation time

1085
220

278

Total Time

369

k^i

1439
500

1606
652

m
2144
1219

Otimpütation time
1087
208

: • " -■ •■ ..:■• ;..■•/. :•■.; ~~—~~n
1 "'"" ' 1377 ' '~——— 1230

347 487
6R&TIAN ' -:
TV%t «'S I ': V I1U *i- '<■;'■' j". -J<-H-> — I _ " ""■!■" "'I 'Mill W4'\

1516
627

2074
1185

Total Time
feomputatidnfttrme

Table 8. CPU Multiplier Experiment Results

Figure 10 shows that the computation times do in fact

grow linearly, but not symmetrically. For example, if the

53

-. 4. 4-««v ??n msec to execute the matrix application emulator took 220 msec.

multiplication once, then the previous model assumed that

it would take 440 msec, to execute it twice, 660 msec, to

execute it three times, etc. Our experiment proved this

^ v^ incorrect The formula that the previous assumption to be incorrect.

model used to compute the CPU time was as follows:

t (CPUtime) * (TimesThroughMatrix).

The correct way tc compute the CPU time, when the

application is to run through the matrix computations more

than once, is to use the following formula:

t a. (CPUtime) * (TimesThroughMatrix H- 1.3).

1400 j

1200 •

1000 ■

8 800 •

"öT 600 •

P 400 ■

200

0

■:r:;> ■';:■',?■ ,: .^i^^;:->

—♦— Rus

—«—Tiberius

Graten

y
< ■'■-Jft;- .. '.'•,-?'.•^v':'^V?..

-7-

\ 2 3 4 5 6 7

Times Through Compilation

8

m •; nae Til r
Figure 10. Computation Time *«* - ^

Multiplication Matrxx

54

C. MEASURING THROUGHPUT

1. Analyzing the Code Used for Measurement

Measuring the correct throughput of the network and

the throughput within a machine is a crucial step in the

prediction model. The very first step in determining

whether the model was using the correct throughput was to

review the code used for the measurement. A thorough

review showed that the code used to measure the throughput

for the original prediction model was off by a factor of

two.

The basis behind the program used to measure

throughput was to measure the amount of time spent sending

a message of a given length to a given IP address and

having the receiving machine echo the message back to the

sending machine. For example, to measure the throughput

between machine 1 and machine 2, machine 1 sends a message

of 2000 bytes to machine 2, which in turn echoes the

message back to machine 1. If machine 1 times how long

this sending and receiving took and divides that roundtrip-

time by twice the size of the message, it should come up

with a value that represents the throughput between the two

machines. In order to get statistically correct data, the

55

test is performed 5000 times. The following pseudo-code

outlines the method used:

begin
numberOfBytes = sendString.length() * 2;
for (1 through 50){

dataTime = 0;
totalDataBytes = 0;
start_Time;

for (1 through 100) {
send (sendString);
receive (echoedString);

}
stop_Time;
dataTime = stopTime-startTime;
totalDataBytes = numberOfBytes * 100 * 2;
throughput = totalDataBytes / dataTime;

}
throughput = AVERAGE(throughputs 1 through 50);

end

If the number of bytes being sent is calculated as the

length of the string multiplied by two < (due to the echoing

of the string from receiver to sender) , then it is not

necessary to multiply "totalDataBytes" by two also. The

effect that this error in the code had was to give the

impression that the throughput was twice as much as was

actually measured. The error was simply fixed by removing

the final multiplication by two from "totalDataBytes."

2. Measuring Throughput with Messages of Different
Sizes

The original prediction model used one message size to

measure the throughput of a network. It measured the

56

throughput using the program described in the previous

section, once for a machine's internal link, and again for

an Ethernet link between machines. The model assumed that

the throughputs would be the same no matter what the size

of the message. This thesis proved that assumption to be

incorrect. Figure 11 shows the results of an experiment

run which measured the throughputs within and between the

machines in the test bed. The experiment used several

different-sized messages to test if the throughput was

affected by message size. Each time the experiment was

run, it would only run between one set of machines at one.

For example, when testing the throughput between machine 1

and machine 2, the experiment did not send any other

messages besides those required to test that throughput.

This ensured that nothing was affecting the measure of

throughput besides the messages intended for that purpose.

57

-.1000

% 800

g 600

1 400

| 200

/

100 500 1000 2000 4000 6000 8000

Message Size (Bytes)

-Pius-Pius Pius-Tiberius —?— Pius-Gratian

Figure 11. Throughput vs. Message Size for Various Links

D. DETERMINING THE NETWORK MULTIPLIER

An application may send messages either between

processes within a single machine, or between processes

residing on different machines. In order for our prediction

model to accurately predict the amount of time it takes for

these messages to be transmitted between processes, it must

know how the network links between the machines handle

several processes communicating concurrently.

To perform interprocess communication, there are

several ways that the processes can send and receive the

messages. In order to choose the right method of

communication, one has to take into account the type of

environment under which the processes will be

communicating. Some methods make use of shared memory

58

space between the processes while other methods may not be

supported by all of the systems making up the distributed

system. [Ref. 4]

The method explored by this thesis is the use of Java™1

sockets. There are two forms of sockets that can be

implemented, depending on the application using them. The

first is a stream socket, which is implemented in the

TCP/IP protocol. These sockets allow for reliable,

connection-oriented communications. The second type of

socket is a datagram socket, which is implemented in

UDP/IP. This is a connectionless form of communication,

and thus is not always reliable, but it is more efficient.

Because of the stream socket's. attributes, it seemed to be

the best choice for our application emulator. [Ref. 4]

Several experiments were run in order to determine how

the throughputs that were measured previously (outlined in

the last section) were affected when more than one process

was transmitting on a link at once. The experiments are

presented in three sections, those run within a machine,

those run between machines, and those run with a combination

of the two. In order to attempt to keep things simple, all

of the experiments were limited to sending messages of sizes

2000 or 4000 bytes.

59

1. Within a Machine

The throughput between processes communicating within

a machine was tested by measuring that throughput when only

one process is sending messages to another process. After

observing what this throughput was, other experiments were

conducted where two, three, and four processes were sending

messages within the same machine. By comparing the

differences in throughput, we were able to see what kind of

network multiplier we should be using in the prediction

model.

The original model assumed that if two processes were

sharing a communications link, then the network multiplier

would be two. If three processes were sharing the link,

the multiplier would be three, and so on. These

experiments prove that assumption to be false.

The layout of the experiments are as shown in Figure

12 and Figure 13. The results are shown in Table 9.

Figure 12. One Process Sends Messages to Another Process
Within the Same Machine

1 Java™ is a Trademark of Sun Microsystems.

60

Vs^yjecvV

Figure 13. Two Processes Transmitting Within the Same
Machine

Number of Processes Transmitting
Msti Size 1 2 3 4
2000 Bvtes 1 1.2 1.5 1.7
ä00OBvte#^ 1 1.2 1.6 1.7

Table 9. Network Multiplier Within a Machine

2. Between Machines

The same type of experiments that were conducted in

order to determine the network multipliers within a machine

were conducted between machines. The same assumptions and

conditions apply in the case of IPC between machines as

within a machine (because of the use of sockets). Figure

14 shows the experiments that were conducted. The results

of the experiments are shown in Table 10 and Table 11.

61

Machinel Machine2 Machine3

1)

2)

3)

Figure 14. Experiments 1-3 Conducted Where Processes
Transmit Between Machines

ThroufthpfltffiBps)^
Experiment!

Jl
2)

JL

2Q00?bytejlmstj
523
460
218

4DD0aiyte^sg
586
340
182

Table 10. Throughput Measured for Experiments 1-3

NetyforksMu tiplier.-.' ■ .--«& ?-"-si'ä»*.--^:
ExpVrirrieWt; 2Q0Ckb'Ytevrrisg 4000^bWimsq

1) 1.0 1.0
2) 1.1 1.7
3) 2.4 3.2

Table 11. Network Multipliers from Experiments 1-3

3. A Combination of Transmitting Between Processes
Between Machines and Within a Machine

The final scenario posed by this thesis concerning

throughput in a network is that of several processes

communicating, some within the same machine and others on

62

another machine. This experiment was conducted to see the

difference between this scenario and that of keeping all

processes either on separate machines or in the same

machine. The experiment conducted is shown in Figure 15.

Table 12 shows the results.

machine 1 machine 2

Figure 15. Experiment With Three Processes on Two Machines

NetworkiMii tiplier
Experimerrt 2000-byte msq 4000-byte-msg

Ethernet 2.6 3.0
Internal 1.5 1.7

Table 12, Network Multipliers for Internal and External
Links

The previous model assumed a simple formula, once

again, of setting the network multiplier to the different

number of transmissions on a single link. In this example,

it assumed that the internal link on machine 1 would have a

network multiplier of two. The external link, or Ethernet

connection, would have a multiplier of four. This

experiment proved that assumption to be incorrect.

63

E. USING A NETWORK ANALYZING TOOL

While running the experiments to measure the

throughput of the network, it was necessary to verify that

these measurements were correct. In order to do this, a

commercially-available LAN analyzer was connected to the

network and set to measure the traffic being transmitted.

The tool that was chosen was Network Instruments'

Observer™. Observer™ assists the user in isolating parts

of a network and view exactly what is being transmitted,

which protocols are being used, the rate at which the data

propagates, how many errors occur, and many other

performance-related measures.

To validate the output of the throughput-measuring

application written for this thesis, Observer™ was set up

to monitor the transmissions over the network. Its

measurements were compared with the output of our

application while our experiments were being conducted.

Observer™ consistently matched our application's output,

therefore validating that the results of our experiments

were in fact correct.

64

F. SUMMARY

In order for the execution-time prediction model to

accurately predict the run-times of an application when it

is distributed across a network, the model must have

correct input as to the throughput of the network, the

throughput within each machine to be scheduled, and the

amount of time the application expects to spend performing

CPU-intensive tasks.

The previous model made many assumptions that this

thesis has proven to be incorrect. Chapter V will present

in detail how the new methods used in the prediction model

were validated by using the application emulator and

comparing actual versus predicted run-times.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

V. RESULTS

This chapter presents the results of several

experiments that were conducted in order to validate our

new prediction model. The results of the experiments,

which were obtained by running the application emulator

with various input parameters, are compared with the output

of the model.

The test bed of three Pentium machines that was used

to validate the original model was not modified for this

thesis. All of the experiments conducted were on the

Microsoft Windows NT Workstation 4.0 operating system, and

all of the applications were run in an asynchronous, non-

GUI mode. For each experiment, we varied one or more of

the following input parameters: the number of messages to

be transmitted between processes, the size of those

messages, the amount of computation to be done by the

processes, or a combination of any of these.

Our model will only be successful if it chooses the

best schedule among the 27 possible schedules of the three

processes among the three machines. If the model predicts

the execution times correctly, then it will in fact choose

the correct schedule. It should also predict when one

61

schedule is relatively better or worse than another

schedule.

A. EXPERIMENT ONE: 25 MESSAGES, 2000 BYTES, 1 MATRIX
MULTIPLICATION

Our model does not predict absolute run-times

correctly, but it does predict relative run-times

correctly. Schedules 6, 8, 12, 16, 20, and 22 are the

fastest schedules, and schedules 1, 14, and 27 are the

slowest.' Our model does not show as much difference

between the schedules' predicted run-times as the actual

run-times seem to indicate, but it does correctly

distinguish between the slowest and the fastest schedules.

Figure 16 shows the results of this experiment.

Actual vs. Predicted
NT non-GUI version (ASYHC) 25 X 2000 Msg

en

SD

to .

£ 3D - ,- - □ Act! a I

■ P re d tote d

schedules

Figure 16. Actual vs. Predicted Run-Times for Experiment
One

68

B. EXPERIMENT TWO: 25 MESSAGES, 2OK BYTES, 1 MATRIX
MULTIPLICATION

Our model does not predict absolute run-times

correctly, nor does it predict relative run-times

correctly. The model does a good job of accurately

predicting the run-times for schedules 6, 8, 12, 16, 20,

and 22, but it also shows those schedules as not being the

fastest when in fact they are. Our model, once again, does

not show as much difference between the schedules'

predicted run-times as the actual run-times seem to

indicate. Figure 17 shows the results of this experiment.

Actual us. Predicted
NT non-GUI version (ASYHC) 25 Msg X 20000 Bytes

1 t.o

12.D

1 D .D - i

BJ1 -

V. 61
c

ta -

2 1 -

DU

□ Act« a I

■ Fred Icte d

i-i-T-i-T-NNCJN

schedules

Figure 17. Actual vs. Predicted Run-Times for Experiment
Two

69

C. EXPERIMENT THREE: 250 MESSAGES, 200 BYTES, 1 MATRIX
MULTIPLICATION

In contrast to the last two experiments which dealt

with a small number of large-sized messages, this experiment

dealt with a medium number of small-sized messages. The

model once again did a good job of predicting the slowest

and the fastest schedules. It predicted the relative run-

times well, and it was closer than the last two experiments

in predicting the absolute run-times, but it still lacks a

high level of accuracy. The results are shown in Figure 18.

Actual vs. Predicted
NT (ASYHC) 250 Msg X 200 Bytes

□ A cti a l

■ P re d icte a

Figure 18. Actual vs. Predicted Run-Times for Experiment
Three

70

D. EXPERIMENT FOUR: 1250 MESSAGES, 200 BYTES, 1 MATRIX
MULTIPLICATION

For this experiment, we increased the number of

messages over the number used in experiment three, and kept

the size of the messages the same. Here we see that the

model did not accurately predict either the relative, nor

the absolute run-times of the schedules. The model is very-

close in predicting the run-times of all schedules except

those of 6, 8, 12, 16, 20, and 22, where all three processes

are on different machines. Figure 19 shows the results.

Actual vs. Predicted

HT (ASVHC) 1250 Msg X 200 Bytes

T U ■

o 6n ■
V
w
V SB -
£
*f ill -
c
2 3D .

21 ■

1 n ■

o u .

1
1 ■■• f ?^

■

1 1 11 | iiii
rr r r r r QActiai

i- m o i» COT-OX)

schedul

N 0» T- CD IO K

as

Figure 19. Actual vs. Predicted Run-Times for Experiment
Four

71

E. EXPERIMENT FIVE: 100 MESSAGES, 2000 BYTES, 1 MATRIX
MULTIPLICATION

In this experiment, the model did not predict the run-

times very well. It did not show a significant difference

between any schedules except 1, 14, and 27. In those three

schedules, where all three processes were assigned to the

same machine, the model correctly shows the run-times as

being^ greater than all of the other schedules. The results

are shown in Figure 20.

Actual vs. Predicted
NT (ASYHC) 100 Msg X 2000 Bytes

su

7 D

6Ü

o
III su

"of
£ ill

■I

3 n -ft

2D

1 D

an
T i i i i i i i r

CO K> N CO

t It

' 1 I I 1 I I I I I I I 1 I I I

schedules

Ü A ct« a I

■ P re d Icte d

Figure 20. Actual vs. Predicted Run-Times for Experiment
Five

72

F. EXPERIMENT SIX: 250 MESSAGES, 2000 BYTES, 1 MATRIX
MULTIPLICATION

The model accurately predicts the run-times of various

schedules in this experiment. The model predicted very

accurately the run-times of the schedules in which all three

processes were assigned different machines (schedules 6, 8,

12, 16, 20, and 22). It also was accurate in predicting

when one process was on one machine and the other two

processes were on another machine. The only discrepancy,

which is actually a factor in all of our experiments, was

that machine one was also assigned to run the master

controller process, so it took up CPU time that was not

included in our model. This discrepancy is what caused the

"spikes" in schedules number 1, 2, 3, 4, 7, 10, and 19. The

model was not as accurate in predicting the absolute run-

times of schedules 1, 14, and 27, when all three processes

are assigned to one machine, but it did correctly show these

schedules as being slower than the others. The results are

shown in Figure 21.

73

1D.D

9U

8D J

7 U

Actual vs. Predicted

NT (ASYNC) 250 Msg X 2000 Bytes

n.n . n.Hn.n.[U

i i i i i i i i i i i r"r™r™i r—i—i—i—i—r

i-i-i-T-T-CMMMtM

schedules

□ ACtl 3 I

■ P re d icte d

Figure 21. Actual vs. Predicted Run-Times for Experiment
Six

G. EXPERIMENT SEVEN: 1250 MESSAGES, 2000 BYTES, 1
MATRIX MULTIPLICATION

In this experiment, for which the number of messages

and the size of those messages were large, the model did

very well. The absolute run-times of the model versus the

application were very close, and all of the schedules' run-

times were relatively correct. The results are shown in

Figure 22.

74

3D.D

2S.D

2D.D .

VI

e is.D

1D.D -

SU -

DU

Actual vs. Predicted
NT 12S0 Msg X 2000 Bytes

Ü Act« a I

■ P re d Icte d

T-TOiohwOjT-coiohv

schedules

a> T- » ID i«»
T- M c* JM N

Figure 22. Actual vs. Predicted Run-Times for Experiment
Seven

H. EXPERIMENT EIGHT: 1250 MESSAGES, 4000 BYTES, 1 MATRIX
MULTIPLICATION

Once again, like the previous experiment, the model

did well in predicting the run-times of the schedules. It

was not completely accurate in predicting the absolute

performance, but it came very close. It predicted the

relative performance of the schedules very well. The

results are shown in Figure 23.

75

Actu a! vs . Predicted

NT 1250 Msg X 4000 Bytes

SD.D

iS.G

iD.D

3S.D
o
<u
VI 3D.D
of
.1 2S-D

C 2Q.D

15.D

1Q.P

S.D

D.D

luijijiliiilililjjililmil
nni

i- w io K a
~r~r

T-COIONOIT-COION
i-i-T-T-r-MCSMCM

schedules

HActial
■ P re dieted

Figure 23. Actual vs. Predicted Run-Times for Experiment
Six

I. EXPERIMENT NINE: 2500 MESSAGES, 5000 BYTES, 6 MATRIX
MULTIPLICATIONS

As the number of messages and the message size continue

to grow, the model's error margin also continues to grow.

The output of the model is no longer as accurate as in

experiment eight, but it still does a very good job of

predicting the relative run-times of the schedules. Figure

24 shows the results of this experiment.

76

1 to .a

12D.D

1DQ.D

BD.D

Actual vs. Predicted
NT 2S00 Msg X 5000 Bytes

6 times through Matrix

o
VI

of
£

,L 6D.n
c
3

ID.D -

2D.D ■

□ H

□ Ac to l

g P r« d Icte d

T-i-T-7-i-CJNNN

schedules

Figure 24. Actual vs. Predicted Run-Times for Experiment
Eight

J. SUMMARY

The results of nine experiments conducted to validate

our model were presented in this chapter. The goal of the

experiments was to vary the input parameters to the model

and to the application emulator so that we would get a mix

of compute-intensive, communication-intensive, and both

compute- and communication-intensive applications in our

experiments.

The results show several things:

1. Most of the inputs to the model were gathered from

running experiments sending many messages of size

2000 or 4000 bytes. This fact made itself evident

77

that experiments six, seven, and eight provided the

most accurate predictions of relative and actual

performance.

2. Where the original model did a good job of

predicting absolute run-times of applications that

were computation-intensive, this thesis did not do

such a good job. However, since this thesis proved

that the methods that the previous model was using

were incorrect, there is still something that is not

being accounted for in the execution-times of those

applications.

3. The model is valid (predicts relative performance

well) for communication-intensive applications.

Chapter VI gives a complete summary of this thesis,

including some ideas on future work to be conducted in this

area of research.

78

VI. SUMMARY

Nowadays, it is common to see the use of a network of

machines to distribute the workload and to share information

between machines. In these distributed systems, the

scheduling of resources to applications may be accomplished

by a Resource Management System (RMS).

In order to come up with a good schedule for a set of

applications to be distributed among a set of machines, the

scheduler uses a model to predict the execution time of the

applications. The model used for this thesis, which

estimates the time that the last task will be completed when

scheduling several tasks among several machines, uses an

analytical, closed-form solution to solve the problem.

A previous thesis investigated questions similar to

those in this thesis, and the model that it presented was a

simple, coarse-grained model. While attempting to assess

the detail of the model needed to come up with a good

schedule, this previous thesis determined that its model was

not detailed enough to provide an accurate prediction of the

run-times of certain applications, mainly communication-

intensive applications, to be scheduled by a RMS. The model

needed to be refined in order to be usable.

79

A. FUTURE WORK

This thesis refined the original prediction model by

using data collected within a controlled environment. This

environment consisted of a test-bed of three Pentium

machines configured exactly alike. Different distributed

environments have different throughputs, latency, CPU

speeds, varying operating systems between machines, and many

other varying parameters. In order to test the model

further, it would need to use input data from a variety of

distributed environments.

The model also needs to be modified so that it can

easily take input parameters from non-homogenous

applications. Currently, the model predicts the performance

of applications consisting of three homogeneous processes.

This means that the processes all spend the same amount of

time computing and they send the same number of equal-sized

messages.

Another area that needs to be researched further is to

test the refined model for accuracy when predicting

synchronous applications. When our model was validated, it

was only done so against applications that executed in an

asynchronous fashion. The previous model was validated

against both synchronous and asynchronous applications, and

80

it found that it was completely inaccurate when predicting

the run-times of synchronous applications.

B. CONCLUSIONS

As stated in Chapter IV, in order for the execution-

time prediction model to accurately predict the run-times of

an application when it is distributed across a network, the

model must have correct input as to the throughput of the

network, the throughput within each machine to be scheduled,

the amount of time the application expects to spend

performing CPU-intensive tasks, and the correct measure of

dilation of CPU and network resources.

In order to provide the correct inputs for all of the

parameters mentioned, we had to run extensive experiments

within our test-bed of machines. Because of the need to run

the sort of experiments that were outlined in Chapters III

and IV, the model may be too detailed, and not accurate

enough, to be efficient when providing input to a scheduler

in an RMS.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

LIST OF REFERENCES

1. Debra Hensgen, Taylor Kidd, David St. John, Matthew C.
Schnaidt, H. J. Siegel, Tracy Braun, Jong-Kook Kim,
Shoukat Ali, Cynthia Irvine, Tim Levin, Viktor Prasanna,
Prashanth Bhat, Richard Freund, and Mike Gherrity, An
Overview of the Management System for Heterogeneous
Networks (MSHN), 8th Workshop on Heterogeneous Computing
Systems (HCW '99), San Juan, Puerto Rico, Apr. 1999,

2. P. Carff. When is a simple Model adequate for use in
scheduling in MSHN? Master's Thesis, Naval Postgraduate
School, Monterey, CA, December 1998.

3. Michael A. Iverson, Fusun Ozguner, and Lee C. Potter.
Statistical Prediction of Task Execution Times Through
Analytic Benchmarking for Scheduling in a Heterogeneous
Environment. Proceedings of the IEEE Eighth
Heterogeneous Computing Workshop (HCW '99), pages 99-110,
April 1999.

4. A.M. Law and W.D. Kelton. Simulation and Modeling
Analysis. McGraw-Hill, Inc., New York, second edition,
1991.

5. Doreen Galli. Distributed Operating Systems. Prentice
Hall, Inc., New Jersey, 1998.

6. Ingrid Bucher, Rebecca Koskela, Margaret Simmons.
Instrumentation for Future Parallel Computing Systems.
ACM Press, New York, 1989.

7. Andrew Tanenbaum. Computer Networks. Prentice-Hall,
Inc., New Jersey, third edition, 1996.

8. Javasoft. Java development kit documentation. Manual,
1998. Available at
http://www.java.sun.com/products/jdk/1.1/download-pdf-
ps.html.

9. Scott Oaks, Henry Wong. Java Threads. O'Reilly and
Associates, Inc., California, 1997.

10. Sidnie Feit. TCP/IP: Architecture, Protocols, and
Implementation with Ipv6 and IP Security. McGraw-Hill,
Inc., New York, 1999.

83

11. Merlin Hughes, Michael Shoffner, Derek Hamner. Java
Network Programming. Manning Publications Co.,
Connecticut, 1999.

84

INITIAL DISTRIBUTION LIST

No. copies

1. Defense Technical Information Center.

8725 John J. Kingman Road, Ste 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

3. Chairman, Code CS 1

Naval Postgraduate School

Monterey, CA 93943-5101

4. Prof. James Bret Michael 1

Computer Science Department Code CS

Naval Postgraduate School

Monterey, CA 93943-5000

5. Prof. Mantak Shing 1

Computer Science Department Code CS

Naval Postgraduate School

Monterey, CA 93943-5000

6. Bianca A. Shaeffer 1

12 E Quincy #2

Riverside, IL 60546

85

